

BioFuels - Cellulosic and Algal Feedstocks

U.S. Department of Agriculture – U.S. Department of Navy Hawaii Renewable Energy and BioEnergy Industry Forum April 6th 2010

The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

DARPA's Expectations: Algal Development

Objectives:

- < \$3/gal JP-8</p>
- < \$2/gal algal oil in Phase 1</p>
- < \$1/gal algal oil in Phase 2</p>

Final Phase 2 deliverables:

- 4,000L bio-derived JP-8 sample
- Qualification plan
- Commercialization plan

Challenges:

- Further improvement of Phase 2 process technologies to meet the more challenging Phase 2 metrics
- Development and integration of high-risk Pre-Planned Product Improvement (P³I) technologies/paths
- Reduction in CAPEX

Timeline:

- June 2010 Dec 2011
- Targeting technology scalability demonstrations for algal growth and processing systems

Projected accomplishments at the end of the DARPA Program:

- Algal oil will be between \$1-2/gal
- Oil production ~2,000 3,000 gal/acre
- Algal oil conversion to jet, diesel, and gasoline ratios will be controllable:
 - 40% jet
 - 30+% diesel
 - 20+% gasoline
 - Balance = light ends
 - Overall 90+% use rate of algae
- Large feed byproducts will be available

Phase	Technical Area	Phase 2 Program Metrics	Status
Phase 2	Affordable Algal Oil for JP-8	 \$1/gal triglyceride oil from algae Projected cost of production of JP-8 \$3/gal at 50 Mgal/yr 	TBD

DARPA's Expectations: Cellulosic Development

Objectives:

- < \$3/gal JP-8</p>
- > 30% energy content conversion in Phase 1
- > 50% energy content conversion in Phase 2

Accomplishments to date suggest the following about cellulosic material:

- 50% energy conversion for most feedstocks
 → ~1,000 gal oil/acre
- Lignin fraction is preferably converted to aromatics
- Cellulosic material is a generator of CO2
- Ideal feedstocks include:
 - Energy cane
 - Energy sorghum
 - Sor-cane
- Cellulosic conversion processes
 - Able to obtain a greater fraction of the target fuel
 - May need additional certifications/approvals

Final Phase 2 deliverables:

- 4,000L bio-derived JP-8 sample
- Qualification plan
- Commercialization plan

Challenges:

- Further improvement of Phase 2 process technologies to meet the more challenging Phase 2 metrics
- Development and integration of high-risk Pre-Planned Product Improvement (P3I) technologies/paths
- Reduction in CAPEX

Timeline:

- September 2010 February 2012
- Targeting technology scalability demonstrations for cellulosic material conversion and processing systems

Phase	Technical Area	Phase 2 Program Metrics	Status	
Phase 2	Cellulosic Material to JP-8	 50% efficiency, by energy, in the conversion of cellulosic material feedstock to JP-8 Projected cost of production of JP-8 < \$3/gal at 50 Mgal/yr 	TBD	

Outcome Objectives of the DARPA Program

Eliminate/reduce technical risk

- Demonstrate technologies at scales capable of producing the 4,000L fuel deliverables
- Demonstrate technical reproducibility
- Develop better understanding of process control
- Further improve process models

Risks remaining at the end of Phase 2:

- Some technical and business risks may still remain
 - Final mitigation of business risk has to be driven by partners outside of DARPA
 - DARPA has been gathering information from industry partners to understand and help the government buydown these risks

Demonstrate scalability

- Demonstrate technical scalability by
 - Developing the capacity to produce the 4,000 L JP-8 fuel deliverable
 - Demonstrating the technology set can reasonably be scaled to 50 Mgal jet fuel/year
- Demonstrate business scalability by
 - Achieving cost objectives at a scale <50 Mgal jet fuel/year
 - Minimizing CAPEX requirement; \$50-100M perceived as maximum in current market conditions

Risks remaining at the end of Phase 2:

 Risk of scale up between Phase 2 demonstration scale and OV1 remains; Must be addressed outside of DARPA

Demonstrate qualify-ability

- The initial BioFuels program (crop oils to JP-8) provided a starting point for the fuel qualification process of "drop-in" alternative fuels
 - Use current fuel infrastructure (pipelines, tankage, engines/turbines)
 - Faster qualification/certification
 - No required changes to current fleet of DoD platforms
- The BioFuels Cellulosic and Algal Feedstocks program provides additional feedstocks to feed in to current qualification process
 - An HRJ fuel qualification will motivate an ASTM certification for non-HRJ fuel which will lag behind by a few years
 - Production of large volumes of cellulosic/algal biofuel for qualification tests

Risks remaining at the end of Phase 2:

 Qualification of HRJ is not expected until 2012 with the qualification of non-HRJ fuels to follow a few years later

Demonstrate commercialize-ability

- Develop mature, robust processes to JP-8
- Develop dynamic cost models to address location driven market differences
- Performers to develop fuel qualification plans and commercialization plans
- DARPA retiring technical risks but business risks will remain

Risks remaining at the end of Phase 2:

 The Phase 2 demonstrations are not pilot scale and will fall short of enabling full scale commercialization

Qualification activities are <u>essential</u> for full transition of the Algal and Cellulosic projects